Bidentate dicarboxylate capping groups and photosensitizers control the size of IrO2 nanoparticle catalysts for water oxidation.

نویسندگان

  • Paul G Hoertz
  • Yeong-Il Kim
  • W Justin Youngblood
  • Thomas E Mallouk
چکیده

Dicarboxylic acid ligands (malonate, succinate, and butylmalonate) stabilize 2 nm diameter IrO2 particles synthesized by hydrolysis of aqueous IrCl(6)2- solutions. Analogous monodentate (acetate) and tridentate (citrate) carboxylate ligands, as well as phosphonate and diphosphonate ligands, are less effective as stabilizers and lead to different degrees of nanoparticle aggregation, as evidenced by transmission electron microscopy. Succinate-stabilized 2 nm IrO2 particles are good catalysts for water photo-oxidation in persulfate/sensitizer solutions. Ruthenium tris(2,2'-bipyridyl) sensitizers containing malonate and succinate groups in the 4,4'-positions are also good stabilizers of 2 nm diameter IrO2 colloids. The excited-state emission of these bound succinate-terminated sensitizer molecules is efficiently quenched on a time scale of approximately 30 ns, most likely by electron transfer to Ir(IV). In 1 M persulfate solutions in pH 5.8 Na2SiF6/NaHCO3 buffer solutions, the excited-state of the bound sensitizer is quenched oxidatively on the time scale of approximately 9 ns. Electron transfer from Ir(IV) to Ru(III) occurs with a first-order rate constant of 8x10(2) s(-1), and oxygen is evolved. The turnover number for oxygen evolution under these conditions was approximately 150. The sensitizer-IrO2 diad is thus a functional catalyst for photo-oxidation of water, and may be a useful building block for overall visible light water splitting systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photovoltage Effects of Sintered IrO2 Nanoparticle Catalysts in Water-Splitting Dye-Sensitized Photoelectrochemical Cells

Water-splitting dye-sensitized photoelectrochemical cells (WSDSPECs) utilize high surface area TiO2 electrodes functionalized with light absorbing sensitizers and water oxidation catalysts. Because water splitting requires vectorial electron transfer from the catalyst to the sensitizer to the TiO2 surface, attaching both sensitizer and catalyst to TiO2 in the correct sequence and stabilizing th...

متن کامل

Microwave synthesis of supported Au and Pd nanoparticle catalysts for CO oxidation.

We report the microwave synthesis and characterization of Au and Pd nanoparticle catalysts supported on CeO2, CuO, and ZnO nanoparticles for CO oxidation. The results indicate that supported Au/CeO2 catalysts exhibit excellent activity for low-temperature CO oxidation. The Pd/CeO2 catalyst shows a uniform dispersion of Pd nanoparticles with a narrow size distribution within the ceria support. A...

متن کامل

Photoinduced water oxidation sensitized by a tetranuclear Ru(II) dendrimer.

A multimetallic ruthenium(II) dendrimer is used for the first time to photosensitize dioxygen production from water by IrO2 nanoparticles; the system is more efficient than an analogous system based on the more commonly used [Ru(bpy)3]2+-type photosensitizers, in particular for the ability of the dendrimer to take advantage of the red portion of the solar spectrum.

متن کامل

Dynamics of Electron Recombination and Transport in Water- Splitting Dye-Sensitized Photoanodes

Water-splitting dye-sensitized photoelectrochemical cells (WS-DSPECs) use visible light to split water using molecular sensitizers and water oxidation catalysts codeposited onto mesoporous TiO2 electrodes. Despite a high quantum yield of charge injection and low requirement for the catalytic turnover rate, the quantum yield of water splitting in WS-DSPECs is typically low (<1%). Here we examine...

متن کامل

Iridium-based double perovskites for efficient water oxidation in acid media

The development of active, cost-effective and stable oxygen-evolving catalysts is one of the major challenges for solar-to-fuel conversion towards sustainable energy generation. Iridium oxide exhibits the best available compromise between catalytic activity and stability in acid media, but it is prohibitively expensive for large-scale applications. Therefore, preparing oxygen-evolving catalysts...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. B

دوره 111 24  شماره 

صفحات  -

تاریخ انتشار 2007